\(% \f is defined as #1f(#2) using the macro \f\relax{x} = \int_{-\infty}^\infty \f\hat\xi\,e^{2 \pi i \xi x} \,d\xi\)Some math examples:
\[\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }\]Another:
\[\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)\]Inline math is also possible: \(c^2 = a^2 + b^2\) Neat!